Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The tristate area of Iowa, Illinois, and Missouri contains some of the best-exposed Mississippian strata in the world, including the type area for the Mississippian subsystem, across a broad carbonate platform known as the Burlington shelf. Strata have been mapped as thinnest along the central middle shelf and thickening both up-ramp and down-ramp, forming a complex dumbbell-like stratigraphic pattern rather than a simple clinoform geometry thinning into the basin. Additionally, two significant hiatuses at the Devonian-Carboniferous boundary and Kinderhookian-Osagean boundary greatly complicate stratigraphic correlations across the region. As a result, the precise temporal relationships between strata deposited across the region remain uncertain. Two large biogeochemical events occurred during this interval that provide facies-independent chronostratigraphic tools: the Hangenberg event, which marks the Devonian-Carboniferous boundary, and the Kinderhookian-Osagean boundary event. To target these events, we collected 66 conodont samples and 1005 carbonate carbon isotope samples from three cores and three outcrops and integrated the results with existing data from key facies/depth transitions across the Burlington shelf. Our new data demonstrate a complex relationship among complementary stratigraphic thicknesses, where the Devonian-Carboniferous boundary interval is thin or absent in the up-ramp inner-shelf setting and preserved in a significantly expanded interval in the central to distal middle-shelf deposits of southeast Iowa and northeast Missouri. However, the overlying Kinderhookian-Osagean boundary interval is not preserved in this down-ramp setting but is preserved in significantly expanded strata in the up-ramp inner-shelf setting of central Iowa.more » « less
-
Abstract Most motion capture measurements suffer from soft-tissue artifacts (STA). Especially affected are rotations about the long axis of a limb segment, such as humeral internal-external rotation (HIER) and forearm pronation-supination (FPS). Unfortunately, most existing methods to compensate for STA were designed for optoelectronic motion capture systems. We present and evaluate an STA compensation method that (1) compensates for STA in HIER and/or FPS, (2) is developed specifically for electromagnetic motion capture systems, and (3) does not require additional calibration or data. To compensate for STA, calculation of HIER angles relies on forearm orientation, and calculation of FPS angles rely on hand orientation. To test this approach, we recorded whole-arm movement data from eight subjects and compared their joint angle trajectories calculated according to progressive levels of STA compensation. Compensated HIER and FPS angles were significantly larger than uncompensated angles. Although the effect of STA compensation on other joint angles (besides HIER and FPS) was usually modest, significant effects were seen in certain degrees-of-freedom under some conditions. Overall, the method functioned as intended during most of the range of motion of the upper limb, but it becomes unstable in extreme elbow extension and extreme wrist flexion–extension. Specifically, this method is not recommended for movements within 20 deg of full elbow extension, full wrist flexion, or full wrist extension. Since this method does not require additional calibration of data, it can be applied retroactively to data collected without the intent to compensate for STA.more » « less
-
Abstract Electromagnetic (EM) motion tracking systems are suitable for many research and clinical applications, including in vivo measurements of whole-arm movements. Unfortunately, the methodology for in vivo measurements of whole-arm movements using EM sensors is not well described in the literature, making it difficult to perform new measurements and all but impossible to make meaningful comparisons between studies. The recommendations of the International Society of Biomechanics (ISB) have provided a great service, but by necessity they do not provide clear guidance or standardization on all required steps. The goal of this paper was to provide a comprehensive methodology for using EM sensors to measure whole-arm movements in vivo. We selected methodological details from past studies that were compatible with the ISB recommendations and suitable for measuring whole-arm movements using EM sensors, filling in gaps with recommendations from our own past experiments. The presented methodology includes recommendations for defining coordinate systems (CSs) and joint angles, placing sensors, performing sensor-to-body calibration, calculating rotation matrices from sensor data, and extracting unique joint angles from rotation matrices. We present this process, including all equations, for both the right and left upper limbs, models with nine or seven degrees-of-freedom (DOF), and two different calibration methods. Providing a detailed methodology for the entire process in one location promotes replicability of studies by allowing researchers to clearly define their experimental methods. It is hoped that this paper will simplify new investigations of whole-arm movement using EM sensors and facilitate comparison between studies.more » « less
An official website of the United States government
